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A discrete velocity model based on a lattice–Boltzmann approximation is con-
sidered in the low Mach number limit. A numerical scheme for this model working
uniformly in the incompressible Navier–Stokes limit is constructed. The scheme is
induced by the asymptotic analysis of the Navier–Stokes limit and works uniformly
for all ranges of mean free paths. In the limit the scheme reduces to an explicit fi-
nite difference scheme for the incompressible Navier–Stokes equation, the Chorin
projection method with MAC grid. Numerical results are presented and the uniform
convergence of the scheme is established numerically.c© 1999 Academic Press
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1. INTRODUCTION

Lattice–Boltzmann methods are based on discrete velocity models of kinetic equations.
In these methods the discrete velocity model is usually solved by an explicit discretization
on a grid conforming with the discrete velocity vectors. In the limit for small Knudsen
and Mach numbers an approximation of the incompressible Navier–Stokes equations is
obtained. See [3, 10] for reviews on lattice–Boltzmann methods and [19] for a review on
discrete velocity models. Numerous work on lattice–Boltzmann methods has been done in
the last years, we refer to the references in the above-cited reviews and, e.g., to [1, 7, 20].
For connections to kinetic schemes we refer to [14].

However, in principle any kind of method or grid structure could be used to solve the
discrete velocity model. This has already been mentioned in [5]. In particular, since the
lattice–Boltzmann discretization is an explicit one, it does not take into account properly
the stiffness of the equations in the limit of small Knudsen or Mach numbers. A very
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fine space and time discretization has to be used to obtain an approximation of the Navier–
Stokes equations. This is reasonable in a variety of situations, for example, if flow in complex
geometries is simulated. In this case the fine grid is not only a requirement needed by the
method in general, but also a requirement due to the geometry. However, if it is desirable
to use larger time and space discretizations, implicit discretizations have to be used. Such
an approach has been used successfully for a large number of kinetic equations with stiff
relaxation terms in fluid dynamic or diffusive limits and did lead to the development of
asymptotic preserving methods; see [4, 13, 11, 12, 17, 15, 16].

The purpose of the present paper is to suggest an implicit time discretization working
uniformly without the necessity to adapt time and space discretization to the smallness of the
Knudsen and Mach number. In the limit for small Mach numbers the scheme tends to a stan-
dard projection scheme with staggered grid for the incompressible Navier–Stokes equations
as in [8, 18, 21]. Section 2 contains a description of the results of the asymptotic procedure to
obtain the incompressible Navier–Stokes equations from kinetic equations. Section 3 con-
tains a lattice–Boltzmann-type discrete velocity model and its associated closed moment
system. In Section 4 the time discretization of the numerical scheme for the discrete velocity
model is considered. Section 5 considers the low Mach number limit leading to the projec-
tion method for the incompressible Navier–Stokes equations. Section 6 shows how the space
discretization is done. Finally, Section 7 contains a numerical investigation of the scheme.

2. KINETIC EQUATIONS AND THE INCOMPRESSIBLE

NAVIER–STOKES EQUATIONS

This section contains a short description of the incompressible Navier–Stokes limit of
kinetic equations; see [2] for details. We consider equations of the form

∂t F + v · ∇x F = C(F), (1)

whereF = F(x, v, t) with x ∈ D ∈Rd, d= 1, 2, 3, v= (v1, v2, v3)∈R3, t ∈ [0,∞). C(F)
denotes the collision operator. The invariants of the collision operator are assumed to be
the collision invariants 1, v, |v|2. An example is given by the Boltzmann collision operator;
see, e.g. [6].

Introducing the diffusive space-time scalingx→ x/ε andt→ t/ε2, whereε is the mean
free path, one obtains the scaled equation

∂t F + 1

ε
v · ∇x F = 1

ε2
C(F). (2)

With the standard perturbation procedure (see, e.g. [2, 9]) the limit equation for (2) asε

tends to 0 is derived in the following way: Solutions of (2) are sought in the form

F = M(1+ ε f ),

whereM is the normalized Maxwellian with zero drift,

M(v) = 1

(2π)3/2
exp

(
−|v|

2

2

)
.
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This represents the low Mach number limit. Using this ansatz in Eq. (1) yields

ε2∂t f + εv · ∇x f = L f + εQ( f, f )+ O(ε2), (3)

whereL denotes the linearized collision operator

Lg = M−1DC(M)Mg

andQ is given by the second Frechet derivative ofC aroundM :

Q(g, g) = 1

2
M−1D2C(M)(Mg∨Mg).

We define the projection onto the space of collision invariants,

P f = 〈 f 〉 + v · 〈v f 〉 +
〈 |v|2− 3

3
f

〉 |v|2− 3

2
, (4)

where

〈 f 〉 =
∫
R3

f (v)M(v) dv.

An example which will be used in the following is the BGK collision operator,

C(F)(v) = −1

τ
(F(v)− MF (v)), (5)

whereMF is the Maxwellian function having moments with respect to 1, v, |v|2 which are
equal to those ofF . This yields

L( f )(v) = −1

τ
( f − P f )(v).

Writing f as

f = f0+ ε f1+ ε2 f2+ · · · ,

inserting this into Eq. (3), and collecting terms of equal power inε gives equations for
f0, f1, f2, . . .. The solvability conditions for these equations yield the form

f0 = ρ0+ v · u0+ |v|
2− 3

2
T0,

whereu0 solves the incompressible Navier–Stokes equations:

∂t u0+ u0 · ∇xu0+∇x p = µ1xu0

∇x · u0 = 0
(6)

with pressurep. T0 andρ0 are determined by a heat transfer equation and the Boussinesq
relation (see [2]).
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The viscosity coefficientµ is determined by the linearized collision operatorL and has
been computed, for example, in [2]. A simple example is again given by the BGK model,
whereµ= τ .

We note that for the derivation of the incompressible Navier–Stokes equations the mo-
ments of the distribution function with respect to

A(v) = 1

2
(|v|2− 5)v, B(v) = v ⊗ v − 1

3
|v|2I

are important in addition to the first five moments with respect to 1, v, |v|2 (see again [2]).
The boundary conditions for Eq. (3) are given by

|v · n| f (x, v, t) =
∫
v′ ·n>0

Rx(v, v′) f (x, v′, t)M(v′)|v′ · n| dv′ (7)

for x ∈ ∂D andv · n< 0. Heren is the outer unit normal atx ∈ ∂D. In particular,Rx has to
fulfill ∫

v·n<0
Rx(v, v′)M(v) dv = 1. (8)

This guarantees that there is no flux through the boundary:∫
v·n<0
|v · n| f (x, v, t)M(v) dv =

∫
v·n>0
|v · n| f (x, v, t)M(v) dv. (9)

Thus, the total density inD is conserved. Extensions of the following to other boundary
conditions, as, e.g., in- and outflow boundary conditions, are possible. Moreover, initial
conditions have to be imposed.

3. A LATTICE–BOLTZMANN-TYPE DISCRETE VELOCITY MODEL

AND THE ASSOCIATED MOMENT SYSTEM

We consider the simplest discrete velocity model in two dimensions leading in the small
Mach number limit to the incompressible Navier–Stokes equation. It is chosen as in lattice–
Boltzmann BGK methods with six velocities on a hexagonal grid. The following can be
easily extended to more complicated models, like seven velocity models, including a rest
particle, or nine velocity models on a square lattice.

The discrete velocities are given by

ci =
(
c(1)i , c(2)i

) = (cos(π(i − 1)/3), sin(π(i − 1)/3)), i = 1, . . . ,6, (10)

and the occupation numbers byN= (N1, . . . , N6). The discrete velocity model is given by

∂t Ni + ∂xc(1)i Ni + ∂yc(2)i Ni = Ji (N) (11)

with

Ji (N) = −1

τ

(
Ni − Neq

i

)
. (12)
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The equilibrium distribution function is

Neq
i =

ρ

6
+ 1

3

(
c(1)i u1+ c(2)i u2

)+ 2

3

∑
k,l

(
c(k)i c(l )i −

1

2
δk,l

)
ukul (13)

with the density

ρ =
6∑

i=1

Ni (14)

and

uk =
6∑

i=1

c(k)i Ni , k = 1, 2. (15)

We mention thatu denotes here the momentum vector and not the velocity as in the usual
lattice–Boltzmann notation. This simplifies slightly the statement of the following. The
form of the collision operator is similar to the standard form used in six or seven velocity
models in LB simulations (see, e.g., [20, 7]). See [1] for a derivation of two-dimensional
LB models from a continuous model with a BGK collision operator as in (5).

In the following our aim is to transform Eqs. (11) into an equivalent system of moment
equations for which it is more obvious how the numerical treatment has to be done. We
consider three second-order moments,

v =
6∑

i=1

((
c(1)i

)2− |ci |2
2

)
Ni =

6∑
i=1

((
c(1)i

)2− 1

2

)
Ni , (16)

w =
6∑

i=1

c(1)i c(2)i Ni , (17)

p = θ − |u|
2

2
, (18)

whereθ is defined by

θ =
6∑

i=1

|ci |2
2

Ni − C

2
= 1

2

(
6∑

i=1

Ni − C

)
, (19)

C a constant defined later.
We mention that

6∑
i=1

((
c(2)i

)2− |ci |2
2

)
Ni = −

6∑
i=1

((
c(1)i

)2− 1

2

)
Ni = −v. (20)

Finally, the third-order moment

q =
6∑

i=1

c(1)i

((
c(2)i

)2− 1

4

)
Ni (21)
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is considered;q is the analogue ofA andv,w are the analogue of the components ofB in
Section 2. There is a one-to-one relation between the kinetic variablesNi , i = 1, . . . ,6, and
u1, u2, θ, v, w,q. All other moments can be written as linear combinations of the above. In
particular, we use

6∑
i=1

(
c(1)i

)2
Ni = v + θ + C

2

6∑
i=1

(
c(2)i

)2
Ni = θ + C

2
− v

6∑
i=1

(
c(1)i

)3
Ni = 3

4
u1− q

6∑
i=1

(
c(2)i

)3
Ni = 3

4
u2

6∑
i=1

c(1)i

(
c(2)i

)2
Ni = 1

4
u1+ q

6∑
i=1

(
c(1)i

)2
c(2)i Ni = 1

4
u2

6∑
i=1

(
c(1)i

)2(
c(2)i

)2
Ni = 1

4

(
θ + C

2
− v
)

6∑
i=1

c(1)i

(
c(2)i

)3
Ni = 3

4
w.

(22)

We proceed further with the diffusion scaling for the discrete velocity model analogous to
the continuous case. The diffusion scaling leads to

∂t Ni + 1

ε
∂xc(1)i Ni + 1

ε
∂yc(2)i Ni = 1

ε2
Ji (N). (23)

The normalized Maxwellian with zero drift, around which we linearize, is in this case simply

Mi = 1

6
. (24)

Analogous to Section 2 we useMi (1+ ε Ñi ), instead ofNi in the scaled equation (23).
Writing againNi for Ñi this leads to

∂t Ni + 1

ε
∂xc(1)i Ni + 1

ε
∂yc(2)i Ni = 1

ε2
Ji (N) (25)

with

Ji (N) = Li (N)+ εQi (N, N), (26)

where

Li (N) = −1

τ

(
Ni − Nleq

i

)
(27)
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with the linearized equilibrium distribution

Nleq
i =

ρ

6
+ 1

3

(
c(1)i u1+ c(2)i u2

)
(28)

and

Qi (N, N) = 2

3τ

∑
k,l

(
c(k)i c(l )i −

1

2
δk,l

)
ukul . (29)

One observes that forε→ 0 Ni → Nleq
i and thusv,w,q→ 0 asε→ 0. Moreover, since

∂x
∑
(c(1)i )2Nleq

i and∂y
∑
(c(2)i )2Nleq

i tend to 0 asε→ 0, we get that∂xρ and∂yρ tend to 0.
Thus,ρ is constant in space and time asε→ 0, if suitable boundary conditions are imposed.

To obtain the scaled moment equations we useu1, u2, p= θ − |u|2/2 as before, with the
scaled quantities

θ = 1

ε

1

2

(
6∑

i=1

Ni − C

)
(30)

and

v = 1

ε

6∑
i=1

((
c(1)i

)2− 1

2

)
Ni

(31)

w = 1

ε

6∑
i=1

c(1)i c(2)i Ni

q = 1

ε2

6∑
i=1

c(1)i

((
c(2)i

)2− 1

4

)
Ni . (32)

The scaling corresponds to the fact that the above-mentioned quantities tend to 0 asε→ 0.
The constantC is defined such that

∑
Ni = ρ tends toC asε tends to 0 (ρ approaches a

constant due to the above).
Multiplication of (25) withc(1)i , c(2)i , |ci |2/2, (c(1)i )2− 1

2, c
(1)
i c(2)i , c(1)i ((c(2)i )2− 1

4)and sum-
mation overi gives (using (22)) the closed system of moment equations for the macroscopic
variables:

∂t u1+ ∂xv + ∂yw + ∂xθ = 0

∂t u2+ ∂xw − ∂yv + ∂yθ = 0

∂tθ + 1

ε2

(
∂x

(
1

2
u1

)
+ ∂y

(
1

2
u2

))
= 0

(33)

∂tv + 1

ε2

(
∂x

(
1

4
u1− ε2q

)
−∂y

(
1

4
u2

))
= − 1

ε2τ

(
v − 1

2

(
u2

1− u2
2

))
∂tw + 1

ε2

(
∂x

(
1

4
u2

)
+ ∂y

(
1

4
u1+ ε2q

))
= − 1

ε2τ
(w − u1u2)

∂tq + 1

ε2

(
−∂x

(
1

2
v

)
+ ∂y

(
1

2
w

))
= − 1

ε2τ
q.

(34)
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This is a hyperbolic system with stiff relaxation terms and a partially stiff advection part.
Writing the linear main part as

∂t z+ A∂xz+ B∂yz (35)

with z= (u1, u2, θ, v, w,q) one observes that the matrixA has three positive and three
negative eigenvalues andB has two positive, two negative, and two zero eigenvalues. This
gives, in particular, the number of boundary conditions which have to be imposed on the
characteristic variables; compare Section 5 for an example. Moreover, initial conditions
have to be imposed.

Formally, the diffusion limit of the above system is straightforwardly determined. As
ε→ 0 the equation forθ reduces to the incompressibility condition:

∂xu1+ ∂yu2 = 0. (36)

The equations forv andw reduce to

v = −∂x

(
τ

4
u1

)
+ ∂y

(
τ

4
u2

)
+ 1

2

(
u2

1− u2
2

)
(37)

and

w = −∂x

(
τ

4
u2

)
− ∂y

(
τ

4
u1

)
+ u1u2. (38)

This yields

∂t u1+ ∂x
1

2

(
u2

1− u2
2

)+ ∂yu1u2+ ∂xθ = τ

4
1u1

∂t u2+ ∂xu1u2− ∂y
1

2

(
u2

1− u2
2

)+ ∂yθ = τ

4
1u2,

(39)

or using the definition ofp,

∂t u1+ ∂x
(
u2

1

)+ ∂yu1u2+ ∂x p = τ

4
1u1

∂t u2+ ∂xu1u2+ ∂y
(
u2

2

)+ ∂y p = τ

4
1u2.

(40)

These are the Navier–Stokes momentum equations with Reynolds number Re= 4/τ .

4. THE NUMERICAL SCHEME: TIME DISCRETIZATION

We consider the system of equations

∂t u1+ ∂xv + ∂yw + ∂xθ = 0
(41)

∂t u2+ ∂xw − ∂yv + ∂yθ = 0

∂tθ + 1

2ε2
(∂xu1+ ∂yu2) = 0, (42)
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together with

∂tv = − 1

ε2

(
∂x

(
1

4
u1− ε2q

)
− ∂y

(
1

4
u2

)
+ 1

τ

(
v − 1

2

(
u2

1− u2
2

)))
(43)

∂tw = − 1

ε2

(
∂x

(
1

4
u2

)
+ ∂y

(
1

4
u1+ ε2q

)
+ 1

τ
(w − u1u2)

)

∂tq = − 1

ε2

(
−∂x

(
1

2
v

)
+ ∂y

(
1

2
w

)
+ 1

τ
q

)
. (44)

As ε tends to 0 the system becomes stiff. Nevertheless, in lattice–Boltzmann methods
a fully explicit discretization is used. We will treat the system by a semi-implicit method.
The nonstiff parts are treated explicitly and the stiff ones are treated in an implicit way. In
particular, the pressure–velocity coupling is treated in an implicit way. This leads to the
usual projection scheme for the incompressible Navier–Stokes equations in the small mean
free path limitε→ 0.

The time discretization of theu1, u2, θ equations is given by

uk+1
1 = uk

1 −1t
(
∂xv

k + ∂yw
k + ∂xθ

k+1
)

(45)
uk+1

2 = uk
2 −1t

(
∂xw

k − ∂yv
k + ∂yθ

k+1
)

θk+1 = θk − 1t

ε2

(
∂xuk+1

1 + ∂yuk+1
2

)
. (46)

Using Eqs. (45) in Eq. (46) yields a Helmholtz equation for the pressure:

1x,yθ
k+1− ε2

1t2
θk+1 = 1

1t

(
∂xuk

1 + ∂yuk
2

)− (∂2
xv

k + 2∂x∂yw
k − ∂2

yv
k
)− ε2

1t2
θk. (47)

Boundary conditions for the Helmholtz equation are determined from Eq. (41) and the
conditions imposed on the hyperbolic system (see the last section for an example). This
equation is solved by an iterative procedure;u1, u2 are then determined from Eq. (45).

The remaining equations are treated as

vk+1 = vk − 1t

ε2

(
∂x

(
1

4
uk+1

1 − ε2qk

)
− ∂y

(
1

4
uk+1

2

)
+ 1

τ

(
vk+1− 1

2

((
uk+1

1

)2− (uk+1
2

)2
)))

, (48)

wk+1 = wk − 1t

ε2

(
∂x

(
1

4
uk+1

2

)
+ ∂y

(
1

4
uk+1

1 + ε2qk

)
+ 1

τ

(
wk+1− uk+1

1 uk+1
2

))
, (49)

qk+1 = qk − 1t

ε2

(
−∂x

(
1

2
vk+1

)
+ ∂y

(
1

2
wk+1

)
+ 1

τ
qk+1

)
. (50)

Introducing

λ(ε) = 1t

τε2

(
1+ 1t

τε2

)−1

,
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we get

vk+1 = ε2τ

1t
λvk − λτ

(
∂x

(
1

4
uk+1

1 − ε2qk

)
− ∂y

(
1

4
uk+1

2

)
− 1

τ2

((
uk+1

1

)2− (uk+1
2

)2
))
,

wk+1 = ε2τ

1t
λwk − λτ

(
∂x

(
1

4
uk+1

2

)
+ ∂y

(
1

4
uk+1

1 + ε2qk

)
− 1

τ
uk+1

1 uk+1
2

)
, (51)

qk+1 = ε2

1t
λqk − λτ

(
−∂x

(
1

2
vk+1

)
+ ∂y

(
1

2
wk+1

))
.

5. THE INCOMPRESSIBLE NAVIER–STOKES LIMIT

Obviously, the time discretized scheme tends to a time discretization of the incompressible
Navier–Stokes equations. We obtain as before

uk+1
1 = uk

1 −1t
(
∂xv

k + ∂yw
k + ∂xθ

k+1
)
,

uk+1
2 = uk

2 −1t
(
∂xw

k − ∂yv
k + ∂yθ

k+1
)
.

(52)

Moreover, one obtains the usual Poisson equation for the pressure:

1x,yθ
k+1 = 1

1t

(
∂xuk

1 + ∂yuk
2

)− (∂2
xv

k + 2∂x∂yw
k − ∂2

yv
k
)
. (53)

This yields, if combined with (52) the incompressibility constraint,

∂xuk+1
1 + ∂yuk+1

2 = 0.

Noting thatλ tends to 1 asε tends to 0, we get

vk+1 = −
(
∂x

(
τ

4
uk+1

1

)
− ∂y

(
τ

4
uk+1

2

)
− 1

2

((
uk+1

1

)2− (uk+1
2

)2
))
,

wk+1 = −
(
∂x

(
τ

4
uk+1

2

)
+ ∂y

(
τ

4
uk+1

1

)
− uk+1

1 uk+1
2

)
, (54)

qk+1 = −∂x

(
τ

2
vk+1

)
+ ∂y

(
τ

2
wk+1

)
.

One obtains the usual projection method for the incompressible Navier–Stokes equations
(40) (see, e.g., [18]).

6. THE NUMERICAL METHOD: SPACE DISCRETIZATION

As mentioned in the Introduction any grid could be used to solve the discrete velocity
model. Thus, we do not use a hexagonal grid as in the lattice–Boltzmann method. Instead,
the space discretization is done using a staggered grid as in the MAC method with

xγ,δ = (γh, δh),
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FIG. 1. Grid.

whereγ, δ are integer or half integer values. Considering a control volume with edges
xi−1/2, j−1/2, wherei, j are integer values, the quantitiesu1, u2, θ, v, w,q are evaluated at
the following points (see Fig. 1);v andθ are evaluated at the center of the controlvolumes,
w at the gridpoints;u1 andq are evaluated at the west and east faces andu2 is evaluated
at the north and south faces of the control volumes. That means we considerv andθ at
xi, j , u1,q at xi−1/2, j , u2 at xi, j−1/2, andw at xi−1/2, j−1/2.

The derivatives are all determined using centered differences. In order to solve the equa-
tions we need to determineu1, u2 atxi, j and atxi−1/2, j−1/2. This is simply done using linear
interpolation; for example,(u1)i, j = 1

2((u1)i−1/2, j + (u1)i+1/2, j ). Thus, no upwinding is
included here.

Boundary conditions are treated in the usual way by linear interpolation at the boundaries
for those values which are not located on the boundaries.

7. NUMERICAL RESULTS AND EXAMPLES

We consider a driven cavity situation with(x, y)∈ [0, 1]2. The usual boundary conditions
in this situation for the continuous kinetic equation are diffuse reflection. That means, that
Rx in Section 2, Eq. (3), is given by

Rx(v, v′) = 1

M̄
|v · n|

(
1+ v · n⊥ ū

ρ̄

)
, (55)

wheren⊥ denotes the vector tangential to the boundary,ū/ρ̄ is the drift in this direction,
andM̄ is defined by

M̄ =
∫
v′ ·n<0

|v′ · n|M(v′) dv′
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FIG. 2. Driven cavity; vector plots of velocities. On the left: Re= 1000, ε= 10−8, 0.1, 1; on the right:
Re= 1, ε= 10−8, 0.01, 0.03.

in order to fulfill (8). This means we assume complete accomodation with a driftū/ρ̄ parallel
to the boundary. At the top of the squareū> 0 andū= 0 at the other three sides.

The boundary conditions for the hyperbolic system (33, 34) are derived from the kinetic
formulation (25) and then rewritten in terms of the macroscopic variables. In terms of the
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FIG. 3. Slip velocities for Re= 1 and different values ofε.

discrete kinetic variablesNi the boundary conditions corresponding to diffuse reflection
are:

On the west faceNi, i = 1, 2, 6, are given byα, whereα is found by (compare Eq. (9))∑
i=3,4,5

∣∣c(1)i

∣∣Ni Mi = α
∑

i=1,2,6

∣∣c(1)i

∣∣Mi .

This corresponds to (7) combined with (55) withū= 0. Mi is given by (24). This yields

Ni = 1

4
(N3+ 2N4+ N5), i = 1, 2, 6.

In terms of the macroscopic variables this leads to

u1 = 0

u2 = 2εw

3v = 8εq.

On the north faceN5, N6 are given byNi =αMū
i M−1

i , i = 5, 6, whereα is given by
(compare again (9)) ∑

i=2,3

∣∣c(2)i

∣∣Ni Mi = α
∑
i=5,6

∣∣c(2)i

∣∣Mi .

Mū
i is, again analogous to (7), combined with (55), given by(1+ 2c(1)i ū/ρ̄)Mi . We use
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FIG. 4. Driven cavity; streamlines. On the left, from above: Re= 1000, ε= 10−8, 0.1, 1; on the right, from
above: Re= 1, ε= 10−8, 0.01, 0.03.

ρ̄= 1. Thus, the constantC used in Section 3 is given by 1. We obtain

N5 = 1

2
(N2+ N3)(1− ū)

N6 = 1

2
(N2+ N3)(1+ ū).

In terms of the macroscopic variables this is

u1 = ū+ εū(2θ − 2v)+ ε(2
√

3w − 8εq)

u2 = 0.
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FIG. 5. Divergence maximum for different values ofε and Re= 1000.

We have three and two conditions, respectively, fitting to the required numbers of boundary
conditions for the hyperbolic system (see Section 3). East and south faces are treated
in an analogous way. The boundary conditions for the Helmholtz equation are due to
u1n1+ u2n2= 0, wheren= (n1, n2) is again the normal to the boundary, and (45) is found by

n1∂xθ + n2∂yθ = −n1(∂xv + ∂yw)− n2(∂xw − ∂yv).

For the simulation zero initial conditions are used foru, θ, v, w,q; ū is chosen equal to 1.
Figure 2 shows vector plots of the velocities for Re= 1000 andε= 10−8, ε= 0.1, ε= 1 at
time T = 15, and for Re= 1 andε= 10−8, ε= 0.01, ε= 0.03 at T = 1, respectively. In
particular, for Re= 1 the kinetic velocity slip is observed at the boundaries for a larger
Knudsen numberε.

In Fig. 3 plots of the slip velocities for different values of the Knudsen numberε are
shown. The figure shows the slip velocities along a horizontal section at the bottom of the
box for Re= 1 at timeT = 1. Forε= 10−8 the slip velocities are zero.

In Fig. 4 streamline plots of the same situations as in Fig. 2 are shown. In particular, for
Re= 1000 the vortices at the lower edges are observed.

Finally, in Fig. 5 the divergence maximum at timeT = 0.01 for different values of the
Knudsen numberε is shown for Re= 1000.

8. CONCLUSIONS

• Considering a lattice Boltzmann type discrete velocity model, a numerical scheme
working uniformly in the incompressible Navier Stokes limit has been presented.
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• The above kinetic model is simple. However, physically more relevant microscopic
systems could be studied as well and treated in a similar way.
• The scheme is based is semiimplicit discretization preserving the asymptotic limit. For

small ε the scheme tends to a standard projection scheme for the imcompressible Navier
Stokes equations. Forε >0 in contrast to the projection method a Helmholtz equation
instead of the usual Poisson equation has to be solved.
• In further work an upwinding procedure should be included in the method. This may

lead to other discretizations for the limit Navier Stokes equations.
• Moreover, connections to the relaxation schemes presented in [13, 12] should be

explored. See also [5].
• The procedures described in the paper are formal. Rigorous mathematical results should

be considered in further work. See, for example [4, 16] for rigorous work in related fields.
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