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A discrete velocity model based on a lattice—Boltzmann approximation is con-
sidered in the low Mach number limit. A numerical scheme for this model working
uniformly in the incompressible Navier—Stokes limit is constructed. The scheme is
induced by the asymptotic analysis of the Navier—Stokes limit and works uniformly
for all ranges of mean free paths. In the limit the scheme reduces to an explicit fi-
nite difference scheme for the incompressible Navier—Stokes equation, the Chorin
projection method with MAC grid. Numerical results are presented and the uniform
convergence of the scheme is established humerically1999 Academic press
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1. INTRODUCTION

Lattice—Boltzmann methods are based on discrete velocity models of kinetic equati
In these methods the discrete velocity model is usually solved by an explicit discretiza
on a grid conforming with the discrete velocity vectors. In the limit for small Knudse
and Mach numbers an approximation of the incompressible Navier—Stokes equatio
obtained. See [3, 10] for reviews on lattice—Boltzmann methods and [19] for a review
discrete velocity models. Numerous work on lattice—Boltzmann methods has been do
the last years, we refer to the references in the above-cited reviews and, e.g., to [1, 7
For connections to kinetic schemes we refer to [14].

However, in principle any kind of method or grid structure could be used to solve
discrete velocity model. This has already been mentioned in [5]. In particular, since
lattice—Boltzmann discretization is an explicit one, it does not take into account prop
the stiffness of the equations in the limit of small Knudsen or Mach numbers. A v
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fine space and time discretization has to be used to obtain an approximation of the Na
Stokes equations. This isreasonable in a variety of situations, for example, if flow in com
geometries is simulated. In this case the fine grid is not only a requirement needed b
method in general, but also a requirement due to the geometry. However, if it is desir
to use larger time and space discretizations, implicit discretizations have to be used.
an approach has been used successfully for a large number of kinetic equations witk
relaxation terms in fluid dynamic or diffusive limits and did lead to the development
asymptotic preserving methods; see [4, 13, 11, 12, 17, 15, 16].

The purpose of the present paper is to suggest an implicit time discretization worl
uniformly without the necessity to adapt time and space discretization to the smallness
Knudsen and Mach number. In the limit for small Mach numbers the scheme tends to a
dard projection scheme with staggered grid for the incompressible Navier—Stokes equa
asin[8, 18, 21]. Section 2 contains a description of the results of the asymptotic procedL
obtain the incompressible Navier—Stokes equations from kinetic equations. Section 3
tains a lattice—Boltzmann-type discrete velocity model and its associated closed mo
system. In Section 4 the time discretization of the numerical scheme for the discrete vel
model is considered. Section 5 considers the low Mach number limit leading to the prc
tion method for the incompressible Navier—Stokes equations. Section 6 shows how the
discretization is done. Finally, Section 7 contains a numerical investigation of the sche

2. KINETIC EQUATIONS AND THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS

This section contains a short description of the incompressible Navier—Stokes lim
kinetic equations; see [2] for details. We consider equations of the form

F +v-VxF =C(F), @)
whereF = F(x,v,t) withxe DeR?, d=1,2 3, v=(v1, v2, v3) € R%, t €[0, 00). C(F)
denotes the collision operator. The invariants of the collision operator are assumed |
the collision invariants 1v, |v|2. An example is given by the Boltzmann collision operatot
see, e.g. [6].

Introducing the diffusive space-time scaliRg> x /e andt — t /€2, wheree is the mean
free path, one obtains the scaled equation

1 1
€ €

With the standard perturbation procedure (see, e.g. [2, 9]) the limit equation for £2) :
tends to O is derived in the following way: Solutions of (2) are sought in the form

F=M(@+ef),

whereM is the normalized Maxwellian with zero drift,

1 [v|2
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This represents the low Mach number limit. Using this ansatz in Eq. (1) yields
€2 f +ev-Vyf =Lf +€eQ(f, f) + O(e?), )
whereL denotes the linearized collision operator
Lg= M~IDC(M)Mg
andQ is given by the second Frechet derivativelaroundM:
Q(. 9) = ;M 'D’C(M)(MgV Mg).

We define the projection onto the space of collision invariants,

2 2
Pf:(f)+v-(vf)+<|v| 3f>'”' 3 )
3 2
where
(f) =/ f ()M (v) dv.
]RS
An example which will be used in the following is the BGK collision operator,
1
C(F)(v) = —;(F(v) — Me(v)), (5)

whereMg is the Maxwellian function having moments with respect to,Jv|?> which are
equal to those oF. This yields

1
L(f)(v):—;(f — Pf)(v).
Writing f as
f= f0+6f1+62f2+'."

inserting this into Eqg. (3), and collecting terms of equal powet igives equations for
fo, f1, f2,.... The solvability conditions for these equations yield the form

lv> -3

fo=po+v-ug+ To.

whereug solves the incompressible Navier—Stokes equations:

0tUp + Ug - VxUg + Vx P = nAxUg

6
Vg -Ug=0 ()

with pressurep. To and pg are determined by a heat transfer equation and the Boussin
relation (see [2]).
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The viscosity coefficient is determined by the linearized collision operaltoand has
been computed, for example, in [2]. A simple example is again given by the BGK mo«
whereu =rt.

We note that for the derivation of the incompressible Navier—Stokes equations the
ments of the distribution function with respect to

A(v) = %(|v|2 —5v, Bw)=v®v— ?13|v|2|

are important in addition to the first five moments with respect ta fv|? (see again [2]).
The boundary conditions for Eq. (3) are given by

[v-n|f(x,v,t) =/ R*(v, vV) f (x, v/, )y M) |v" - n| dv’ @
v-n>0

for x € 9D andv - n < 0. Heren is the outer unit normal at € 9D. In particular,R* has to
fulfill

/ R*(v, v)M(v)dv = 1. (8)
v-n<0

This guarantees that there is no flux through the boundary:

/ lv-n|f(x, v,t)M(v)dv:/ lv-n|f(x, v, )M ) dv. (9)
v-n<0 v-n>0

Thus, the total density ilD is conserved. Extensions of the following to other boundal
conditions, as, e.g., in- and outflow boundary conditions, are possible. Moreover, in
conditions have to be imposed.

3. ALATTICE-BOLTZMANN-TYPE DISCRETE VELOCITY MODEL
AND THE ASSOCIATED MOMENT SYSTEM

We consider the simplest discrete velocity model in two dimensions leading in the st
Mach number limit to the incompressible Navier—Stokes equation. It is chosen as in latt
Boltzmann BGK methods with six velocities on a hexagonal grid. The following can
easily extended to more complicated models, like seven velocity models, including a
particle, or nine velocity models on a square lattice.

The discrete velocities are given by

¢ = (¢, ¢?) = (cosm(i — 1)/3),sin(x( —1)/3)), i=1,....6, (10)
and the occupation numbers bly= (Ng, ..., Ng). The discrete velocity model is given by
xN; + VN + 3ycP Ny = J'(N) (11)

with

J(N) = —%(Ni — N&9). (12)
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The equilibrium distribution function is

NeT= 2
6"

OOII—‘

with the density

i=1

and

6
Uk = Zci(k)Ni, k=12
i1

2
(Cl(l)ul + C(Z) )+ 3 ( c® (I) 5k|)UkU|
Kl

(13)

(14)

(15)

We mention thati denotes here the momentum vector and not the velocity as in the us
lattice—Boltzmann notation. This simplifies slightly the statement of the following. T!
form of the collision operator is similar to the standard form used in six or seven veloc
models in LB simulations (see, e.g., [20, 7]). See [1] for a derivation of two-dimensiol

LB models from a continuous model with a BGK collision operator as in (5).

In the following our aim is to transform Egs. (11) into an equivalent system of mom
equations for which it is more obvious how the numerical treatment has to be done.

consider three second-order moments,
6 G| 6

1 (d 1

v:Z((ci()) ) :z< o) )Ni,

1

i=1

6
w=3" VN,
i=1

C a constant defined later.
We mention that

i=1

Finally, the third-order moment

1
q= Z C<1>< )2 4) N,

zej ((c;2>)2 _ %) N, = _ZG: <(c§1>)2 _ %) N, = —o.

(16)

(17)

(18)

(19)

(20)

(21)



RELAXATION SCHEME 421

is consideredq is the analogue ofA andv, w are the analogue of the component®ah
Section 2. There is a one-to-one relation between the kinetic varitlples=1, .. ., 6, and
ui, Uy, 6, v, w, . All other moments can be written as linear combinations of the above.
particular, we use

. (22)
S P ()N = Sui+q

6

> (6N = T,

i=1

6
1 C
> @ = g0+ 5 )

i=1
6
S o) = w.
i=1

We proceed further with the diffusion scaling for the discrete velocity model analogou
the continuous case. The diffusion scaling leads to

1 1 1.
Ni + =N + =ayc? Ny = S JN(N). (23)
€ € €
The normalized Maxwellian with zero drift, around which we linearize, is in this case sim
Mi = —. (24)

Analogous to Section 2 we udd; (1+ eNj), instead ofN; in the scaled equation (23).
Writing againN; for N; this leads to

1 1 1.
aNi + =N + =3y Ni = S I (N) (25)
€ € €
with
J(N) = L'(N) + €Qi(N, N), (26)
where

L'(N) = —%(Ni — N (27)
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with the linearized equilibrium distribution

Nileq _ % +2(c c®

ur + c?uy) (28)

Wl

and

2
Qi(N,N) = = Z(C.(k)c(l) §5k,|>ukul. (29)

kil

One observes that far— 0 N; — N/®@ and thusv, w, q — 0 ase — 0. Moreover, since
3 32 (cP)2N/* anday 5" (c®)2N/* tend to 0 ag — 0, we get thaby p anddyp tend to O.
Thus,p is constant in space and timeeas> 0, if suitable boundary conditions are imposed

To obtain the scaled moment equations wewsel,, p= 60 — |u|?/2 as before, with the
scaled quantities

6
_ }% (Z N — c) (30)
i=1

and

v = 5; ((ch)Z _ %) N

i=1

1 6
w = g E Ci(l)Ci(Z)Ni
1
(1) (2) _
=5, § j ( 4> Ni. (32)

The scaling corresponds to the fact that the above-mentioned quantities tendite:0Gas
The constan€ is defined such thaf_ N; = p tends toC ase tends to 0 f approaches a
constant due to the above).

Multiplication of (25) withc™™, ¢, |ci12/2, (c)?—3, cPc®, ¢ ((¢?)2~ 1) and sum-
mation ovei gives (using (22)) the closed system of moment equations for the macrosc
variables:

(31)

OtUy + 0xv 4+ dyw + 9x6 =0

1 1 1
8[9 + Z 8)( §u1 + ay Euz - O
1 1 ) 1 1 1o 2
atU+€2(ax(4ul_E Q>—3y<4U2>) = —6%(”— 2(U1—UZ)>
1 1 1 5 1
B + 55 (| JUz) +dy( Jui+ea) ) = — 5w - ) (34)

3 1 5 1 5 1 _ 1
At 2\ 73V T Y] ) = T Y

(33)
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This is a hyperbolic system with stiff relaxation terms and a partially stiff advection pe
Writing the linear main part as

%z + Adyz+ Boyz (35)
with z=(u1, up, 6, v, w, q) one observes that the matri has three positive and three
negative eigenvalues arélhas two positive, two negative, and two zero eigenvalues. Tt
gives, in particular, the number of boundary conditions which have to be imposed on
characteristic variables; compare Section 5 for an example. Moreover, initial conditi
have to be imposed.

Formally, the diffusion limit of the above system is straightforwardly determined.
€ — 0 the equation foé reduces to the incompressibility condition:

The equations for andw reduce to

T T 1
v = —dy (4u1) + 8y<4u2) + E(uf — uj) (37)
and
T T
w = —0x (4u2> - 8y(4u1> + UiUy. (38)
This yields

1, 2 T
dug + axé (Uf — u3) + dyusUz + 30 = ZAul

(39)
1, 2 T
dUs + 9y UiUy — ayé(u1 —Uu3) +0y0 = ZlAuz,
or using the definition ob,
2 T
Oz + 0x (U) + dyUsliz + 0P = Z AU
(40)

2 T
dtUs + dxUqUo + ay (UZ) + 3yp = ZAUz.
These are the Navier—Stokes momentum equations with Reynolds numbet/Re

4. THE NUMERICAL SCHEME: TIME DISCRETIZATION

We consider the system of equations

atu1+axv+ayw+ax0 == O
(41)

1
8'[6 -+ ?(8)&]1 + 8yU2) = 0, (42)
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together with
1 1 1 1 1
atv —62<ax<4U1—62q> —ay(4uz> +T<U— 2(“%-“%)))
1 1 1 ) 1
_Z ax Zu2 +8y Zu1+€ q +;(w_u1u2)
0 1 a ! +a ! + ! (44)
="z \ 2" (2% 4)

As ¢ tends to 0 the system becomes stiff. Nevertheless, in lattice—Boltzmann mett
a fully explicit discretization is used. We will treat the system by a semi-implicit methc
The nonstiff parts are treated explicitly and the stiff ones are treated in an implicit way
particular, the pressure—velocity coupling is treated in an implicit way. This leads to
usual projection scheme for the incompressible Navier—Stokes equations in the small |
free path limite — 0.

The time discretization of they, uy, 6 equations is given by

(43)

8tw

Ut = ¥ — At (80" + dyw* + 8,0%t1)
(45)

us™ = u§ — At(aw* — dy0* + 3,0 1)
gk+Ll — gk _ (ax uft + ayusth). (46)
Using Egs. (45) in Eq. (46) yields a Helmholtz equation for the pressure:
k+1 e k+1 1 k k 2,k 4 o k_ a2 K k
Ayt = <50 = = (0] + ByU3) — (350" + 200w — a") — Ee (47)

Boundary conditions for the Helmholtz equation are determined from Eq. (41) and

conditions imposed on the hyperbolic system (see the last section for an example).

equation is solved by an iterative procedurg;u, are then determined from Eq. (45).
The remaining equations are treated as

k+1 k _ k+1 2k k+l
v v e ( X ( — € q ) y( )

P2 (- (- W) ) (48)

T

At 1 1 1
I (3x (4 k+1> + 3y<4 Ukt 4 e2q ) . (wk+1 — u'{+1u'§+1)>, (49)

€2
At 1 1 1
k1 _ 4k 24 = k+1 - k+l k+1
g =q €2< ax(zv >+8y<2w )+Tq ) (50)
Introducing

7€

At At 7t
Mo =—(1+—) .
TE
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we get
€27 1 1 1 2 2
KL — EM) —arT (8 (4u'§+1 Ezqk> —dy (4 k+1> _ 5((u‘§“) _ (uléJrl) ))
€%t 1 1 1
Wkl Ait)hwk . <3X (4 k+1> + ay(4 uktt 4 e%q > — Tuf’luk*l), (51)

2
k1l _ € k 1 i 1
= —AQ" — AT — — — .
q Al q r( Bx(zv )+ay(2w ))

5. THE INCOMPRESSIBLE NAVIER-STOKES LIMIT

Obviously, the time discretized scheme tends to a time discretization ofthe incompres
Navier—Stokes equations. We obtain as before

ufth = Uk — At(av* + dywk + 9,051, )
us™ = uk — At(Bcwk — dyvk + ayekt?).
Moreover, one obtains the usual Poisson equation for the pressure:
1
A0t = & (3xuf + dyus) — (370" + 20,0yw* — 820%). (53)

This yields, if combined with (52) the incompressibility constraint,

ax k+l+ay k+1 —0.

Noting thati tends to 1 as tends to 0, we get
k+1 Ukl Tkt 1/ k+1)2
e o) (i) )
wk+1 ax k+l +ay k+l u|](_+luk+l , (54)
4 4
k+1 k+1 k41
= —8 8 .
() a3

One obtains the usual projection method for the incompressible Navier—Stokes equa
(40) (see, e.g., [18]).
6. THE NUMERICAL METHOD: SPACE DISCRETIZATION

As mentioned in the Introduction any grid could be used to solve the discrete velo
model. Thus, we do not use a hexagonal grid as in the lattice—Boltzmann method. Ins
the space discretization is done using a staggered grid as in the MAC method with

X}/,(S = (Vh, (Sh)a
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w(i-1,) u2(ij) w(i,)

® ® ®
x(i+1/2,j+1/2)

ulGi-1j) WULGM) .umm

qG-1,j) G q(ij)
® ® ®

w(i-1,j-1) u2(i,j-1) w(ij-1)
FIG.1. Grid.

wherey, § are integer or half integer values. Considering a control volume with edc
Xi—1/2,j—1/2, Wherei, j are integer values, the quantities u,, 6, v, w, q are evaluated at
the following points (see Fig. 1); and6é are evaluated at the center of the controlvolume:
w at the gridpointsy; andq are evaluated at the west and east facesuarid evaluated
at the north and south faces of the control volumes. That means we consdei® at
Xi,j,Us, g atXi_1/2j, Uz at X j_1/2, andw atXi_1/2j-1/2.

The derivatives are all determined using centered differences. In order to solve the €
tions we need to determing, u, atx; ; and atxj_1,2 j_1/2. This is simply done using linear
interpolation; for example(uy); j = %((Ul)i_l/g,j + (Uit1/2,j). Thus, no upwinding is
included here.

Boundary conditions are treated in the usual way by linear interpolation at the boundz
for those values which are not located on the boundaries.

7. NUMERICAL RESULTS AND EXAMPLES

We consider a driven cavity situation witk, y) € [0, 1]°. The usual boundary conditions
in this situation for the continuous kinetic equation are diffuse reflection. That means,
R* in Section 2, Eq. (3), is given by

1 _
R*(v, v’)=—|v-n|(1+v-nlu_), (55)
M p

WhergnL denotes the vector tangential to the boundapy is the drift in this direction,
andM is defined by

M:/ [v-nM @) dv’
v-n<0
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Driven Cavity, Re = 1, eps =0
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FIG. 2.

Re

0.03.

]

in order to fulfill (8). This means we assume complete accomodation with adpifrarallel

to the boundary. At the top of the square- 0 andu = 0 at the other three sides.

The boundary conditions for the hyperbolic system (33, 34) are derived from the kin
formulation (25) and then rewritten in terms of the macroscopic variables. In terms of
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Slip Velocities, Re=1, eps=107,0.01,0.03

T
eps=1 08

~0.01|

~0.015

=0.02

-0.025

eps=0.03

FIG. 3. Slip velocities for Re= 1 and different values af.

discrete kinetic variables|; the boundary conditions corresponding to diffuse reflectic
are:

On the west facd; i =1, 2, 6, are given by, wherex is found by (compare Eq. (9))

Z |Ci(1)|NiMi =« Z |Ci(1)’|\/|i.

i=3,4,5 i=1,2,6
This corresponds to (7) combined with (55) with= 0. M; is given by (24). This yields

1 .
N = Z(N3+2N4+ Ns), i=1,26.

In terms of the macroscopic variables this leads to

up =20
Uy = 2w
3v = 8eq.

On the north faceNs, Ng are given byN; =aMYM™,i =5, 6, wherex is given by
(compare again (9))

Z |Ci(2)|Ni M =« Z |Ci(2)||\/|i.

i=2,3 i=5,6

MF is, again analogous to (7), combined with (55), given(bw- 2q(1)l7/p_) M;. We use
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FIG. 4. Driven cavity; streamlines. On the left, from above:-R&00Q € = 1078, 0.1, 1; on the right, from
above: Re=1, ¢ =107, 0.01, 0.03.

o =1. Thus, the constaf? used in Section 3 is given by 1. We obtain

1 _
= -(N2+ N3)(1—u)

N
2

a1

1 _
Ne = E(Nz + N3)(1+u).

In terms of the macroscopic variables this is
Uy = U+ eU(20 — 2v) + €(2v/3w — 8¢q)

u, = 0.
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x 107 Divergence Maximum, Re=1000, eps=10"%,0.01,0.1,1
1 1

0 0.01 0.1 1
eps

FIG. 5. Divergence maximum for different values ©and Re=1000.

We have three and two conditions, respectively, fitting to the required numbers of boun
conditions for the hyperbolic system (see Section 3). East and south faces are tr
in an analogous way. The boundary conditions for the Helmholtz equation are du
uin; + uzn, = 0, wheren = (nq, ny) is again the normal to the boundary, and (45) is found &

MO + Nadyd = —Ny(Bxv + dyw) — Na(dxw — dyv).

For the simulation zero initial conditions are usedudoé, v, w, g; Uis chosen equal to 1.
Figure 2 shows vector plots of the velocities for-R&000 andt =108, ¢ =0.1, e =1 at
time T =15, and for Re=1 ande =108, ¢ =0.01, ¢ =0.03 at T =1, respectively. In
particular, for Re=1 the kinetic velocity slip is observed at the boundaries for a larg
Knudsen numbet.

In Fig. 3 plots of the slip velocities for different values of the Knudsen nunabee
shown. The figure shows the slip velocities along a horizontal section at the bottom of
box for Re=1 at timeT = 1. Fore = 1078 the slip velocities are zero.

In Fig. 4 streamline plots of the same situations as in Fig. 2 are shown. In particular
Re=1000 the vortices at the lower edges are observed.

Finally, in Fig. 5 the divergence maximum at tirie= 0.01 for different values of the
Knudsen number is shown for Re= 1000.

8. CONCLUSIONS

e Considering a lattice Boltzmann type discrete velocity model, a numerical sche
working uniformly in the incompressible Navier Stokes limit has been presented.
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e The above kinetic model is simple. However, physically more relevant microsco
systems could be studied as well and treated in a similar way.

e The scheme is based is semiimplicit discretization preserving the asymptotic limit.
smalle the scheme tends to a standard projection scheme for the imcompressible N
Stokes equations. Far> 0 in contrast to the projection method a Helmholtz equatic
instead of the usual Poisson equation has to be solved.

o In further work an upwinding procedure should be included in the method. This n
lead to other discretizations for the limit Navier Stokes equations.

e Moreover, connections to the relaxation schemes presented in [13, 12] shoult
explored. See also [5].

e Theproceduresdescribedinthe paper are formal. Rigorous mathematical results s
be considered in further work. See, for example [4, 16] for rigorous work in related fiel
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